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Purpose. A quantitative structure–property relationship (QSPR) was
developed to predict drug solubility in binary mixtures of polyethyl-
ene glycol (PEG) 400 and water. The ability of the QSPR model to
predict solubility was assessed and compared to the classic log-linear
cosolvency model.
Methods. The solubility of 122 drugs, ranging in log P from –2.4 to
7.5, was determined in 0%, 25%, 50%, and 75% PEG (v/v in water)
by the shake-flask method. Solubility data from 84 drugs were fit by
linear regression using the following molecular descriptors: molecular
weight, volume, radius of gyration, density, number of rotatable
bonds, hydrogen-bond donors, and hydrogen-bond acceptors. The
multiple linear regression model was optimized by a genetic algo-
rithm guided selection method. The remaining 38 compounds were
used to test the predictability of the model.
Results. QSPR-based models developed at each volume fraction with
the training set compounds showed a reasonable correlation coeffi-
cient (r) of ∼0.9 and a root mean square (rms) error of <0.5 log unit.
The model predicted solubility values of ∼78% of the testing set
compounds within 1 log unit. The log-linear model was as effective as
the QSPR-based model in predicting the testing set solubilities; how-
ever, many drugs, as expected, showed significant deviation from
log-linearity.
Conclusions. The QSPR model requires only the chemical structure
of the drug and has utility for guiding vehicle identification for early
preclinical in vivo studies, especially when compound availability is
limited and experimental data such as aqueous solubility and melting
point are unknown. When experimental data are available, the log-
linear model was verified to be a useful predictive tool.

KEY WORDS: cosolvent; in silico; PEG 400; prediction; QSPR
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INTRODUCTION

Computational methods for solubility and other physico-
chemical properties enable the drug discovery–development
interface to become more efficient, as these methods often
require little or no experimental input. Thus, predictive tools
have the ability to accelerate drug candidate optimization and
hence the overall drug screening process (1). An early assess-

ment of in vivo pharmacokinetics is often critical to quickly
make go/no-go decisions on new candidates. However, in
early discovery, the amounts of compound available for iden-
tification of preclinical dosing vehicles are usually limited.
Models that predict the solubility of compounds in pharma-
ceutically relevant solvents can assist the pharmaceutical sci-
entist in the development of preclinical drug formulations,
which allow for the determination of critical absorption dis-
tribution metabolism excretion (ADME) and toxicology data.

One of the properties most crucial to candidate screening
is the solubility of the compound. When the aqueous solubil-
ity of a drug candidate is inadequate to permit solution for-
mulations, cosolvents are often used to improve solubility (2).
Cosolvents disrupt the strong interactions between water
molecules, and therefore reduce the surface tension, solubility
parameter, and polarity of the aqueous phase (3). Many drugs
become more soluble as the cosolvent decreases the ability of
water to “squeeze out” the nonpolar solutes (3).

Polyethylene glycol (PEG) 400 is commonly used as a
cosolvent in the pharmaceutical industry. Sweetana and Ak-
ers estimate that 10% of FDA-approved parenteral products
contain cosolvents (2). In addition, most in vivo formulations
at the preclinical stage, for both oral and intravenous admin-
istration, are solutions. When drugs are insoluble in water,
PEG is an excipient of choice based on its good solubilization
properties and overall acceptability in terms of side-effect
profile (4).

Although the literature presents several models for pre-
dicting solubilization by cosolvents (5), many require the col-
lection of experimental data, a luxury often not afforded at
this stage in drug discovery where compound is in short sup-
ply. In the presentation of an excess free energy approach to
estimating solubility in mixed solvents, Williams and Amidon
(6) questioned the utility of the extended form of the regular
solution equation (7) because it requires the experimental
determination of the heat of fusion, melting point, molar vol-
ume, and solubility parameters of both solute and solvent; so
much lab work may thwart the goal to estimate solubility with
the least number of experiments (6).

Yalkowsky, Flynn, and Amidon presented the classic log-
linear relationship for drug solubility in binary aqueous sys-
tems (8). The accuracy of the log-linear model has been
proven for many drugs and cosolvents (3,9–12), and the sim-
plicity of the model complements its utility. Nevertheless,
some experimental data must be determined prior to its ap-
plication.

This work focused on the development of a predictive
solubility model at three volume fractions of PEG 400: 25%,
50%, and 75%. Molecular descriptors such as molecular
weight, volume, density, radius of gyration, number of rotat-
able bonds, hydrogen-bond donors, and hydrogen-bond ac-
ceptors were used such that the solubility predictions were
made solely on the basis of the drug’s chemical structure. This
model is advantageous in that the data for all 122 drugs used
to develop and test the model were generated by a uniform
experimental procedure. Furthermore, the drugs represent a
wide range of compounds, with log P values from –2.4 to 7.5
and molecular weights from 111 to 614 g/mol. Additionally,
the predictive power of this model was compared to the more
traditional approach of the log-linear model.
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MATERIALS AND METHODS

Materials

Polyethlylene glycol 400 was purchased from J. T. Baker
(Phillipsburg, NJ, USA); methyl sulfoxide, methanol, and
acetonitrile were obtained from EM Science (Gibbstown, NJ,
USA); 0.1 N sodium hydroxide solution was acquired from
VWR Scientific Products (West Chester, PA, USA). All
drugs studied (listed in Table I) were purchased from Sigma-
Aldrich, Inc. (St. Louis, MO, USA). Only the free forms of
the compounds were obtained (i.e., no salts or other deriva-
tives were involved in the current study).

Experimental Methods

The crystallinity of each drug was verified by either dif-
ferential scanning calorimetry, X-ray diffractometry, and/or
microscopy. For each drug, an amount sufficient to ensure
saturation was mixed with 200 �l of 25%, 50%, and 75% (v/v)
PEG in separate vials. The vials were vortexed, then shaken
at room temperature (23 ± 2°C) for at least 24 h in a Burrell
Scientific WristAction Shaker (Pittsburgh, PA, USA) in order
to obtain equilibrium. Equilibrium was confirmed by “spot
checking” various samples at 24 and 48 h. To prevent any
possible photodegradation, all vials were protected from light.
Formation of PEG solvates and hydrates upon equilibration
of the sample was not examined in this study.

The vials were spun in an Eppendorf Centrifuge 5402
(Westbury, NY, USA) at 14,000 rpm (g × 100) for 15 min to
separate the saturated solution from the excess solid. The
supernatant from each vial was filtered and/or diluted as nec-
essary for quantitation purposes. The diluted samples, along
with an appropriate standard curve, were analyzed on a Wa-
ters 2690 HPLC (Milford, MA, USA) with a Waters 996 Pho-
todiode Array Detector.

Model Development

The predictive model was comprised of three quantita-
tive structure–property relationships (QSPRs) to predict drug
solubility in each of the volume fractions of PEG used in the
experiments. The experimental solubility values from a train-
ing set of 84 drugs were fit by linear regression to specific
molecular descriptors, calculated from the compound’s struc-
ture. The calculations were performed on a Silicon Graphics
O2 IRIX 6 workstation (SGI, Mountain View, CA, USA) and
the descriptors calculated using Cerius2 software (Molecular
Simulations, Inc., San Diego, CA, USA) (13).

Thirty-eight of the 122 drugs were not included in the
model fitting; rather, these drugs were reserved as a testing
set to validate the model’s performance. These compounds
were selected by a combination of Cerius2’s cluster analysis
and random number generation to achieve representation of
all molecule types, so as not to bias the results.

The most important aspect of developing the model was
the selection of appropriate molecular descriptors. Although
hundreds of parameters are available for molecular modeling,
it was necessary to choose descriptors chemically and physi-
cally relevant to solubility characterization (13,14). Certain
chemical properties such as melting point, heat of fusion, and
aqueous solubility might produce better modeling results, but
these were ignored because they require experimental mea-
surements, thus thwarting the objective to accelerate the pro-

cess of screening drug candidates in the absence of sufficient
drug substance to perform such experiments. Other descrip-
tors, including log P and polarizability, were left out because
they are calculated using group contribution methods that
would introduce additional error.

A linear model was initially generated using the 84 com-
pound training set. However, this single group model was not
able to encompass the complexity of the data set, due largely
to the diversity in chemical space. Table II shows that r was
�0.67 for each of the PEG 400 volume fractions. Thus, de-
scriptor selection alone did not adequately generate a reliable
QSPR model.

In an effort to improve predictability, it was necessary to
divide or “bin” the compounds of the training set into groups
to optimize the model. This was accomplished through use of
a genetic algorithm guided selection method developed by
Cho and Hermsmeier (13,15). Briefly, this program catego-
rized the training set compounds into multiple groups based
on the similarities of the molecular descriptor values. The
genetic algorithm guided selection requires a minimum com-
pound to variable ratio of 5:1 in each group to get statistically
sound models. It must be emphasized that this model does not
group compounds based on chemotype; thus, structurally
similar compounds could potentially fall into different groups
if they possess very different molecular descriptor values. The
84 training set compounds were divided into two groups, and
seven molecular descriptors were selected to regress the
model. It was also possible to divide the training set into three
groups and use five variables, but these attempts did not im-
prove the model’s performance and therefore such ap-
proaches were not pursued.

Combinations of molecular descriptors were analyzed to
achieve the best fit. As the genetic algorithm guided selection
method classified the training set compounds into two groups,
a linear regression model was obtained for each group at each
of the three volume fractions of PEG in the study. The re-
gression model was a linear combination of the following
seven molecular descriptors: molecular weight, volume, den-
sity, radius of gyration, number of hydrogen-bond donors,
hydrogen-bond acceptors, and rotatable bonds. Because we
do not expect linear returns to scale, a logarithmic transfor-
mation for solubility was carried out in order to maintain the
linear relationship between solubility and the independent
variables.

Model Validation

The predictive ability of the model was tested by com-
paring the predicted solubility values for the testing set com-
pounds with the corresponding experimental values. The
compounds in the testing set were not used for model devel-
opment and therefore represented unknown compounds. The
model predicted the solubility of each testing set compound
as follows: The molecular descriptors of a particular testing
set compound were compared to the descriptors of all 84
compounds in the training set. The training set compound
that was most similar to the testing set compound determined
which of the two groups the testing set compound belonged
to. The solubility for the testing set compound was then pre-
dicted with the appropriate group model. Specifically, the
similarity between compounds was determined by Euclidean
distance, dij, as follows:
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Table I. Drugs Studied, in silico Modeling Assignments, and Log-
Linear � Values

Compound name Model set MW log P* �

Acetazolamide Test 222.24 −0.3 1.90
Adenine Train 135.13 −0.1 1.28
Adenosine Train 267.24 −1.3 0.85
Allopurinol Test 136.11 −1.3 1.16
p-Aminobenzoic acid Test 137.14 0.0 1.76
Aminopyrine Train 231.30 0.8 0.70
5-Aminosalicylic acid Test 153.14 0.5 0.74
p-Aminosalicylic acid Train 153.14 0.3 2.72
Ampicillin Train 349.40 1.4 −0.13
Aspirin Train 180.16 1.2 1.99
Atropine Train 289.37 1.5 1.48
Azathioprine Train 277.26 0.9 2.16
Baclofen Test 213.66 1.6 −0.50
Benzamide Train 121.14 0.7 1.25
Benzocaine Train 165.19 2.5 2.83
Benzoic acid Train 122.12 1.9 2.65
Biphenyl Test 154.21 4.0 5.16
Bumetanide Train 364.42 2.8 4.00
Butamben Train 193.25 3.6 4.28
Butylparaben Train 194.23 3.5 4.35
Caffeine Train 194.19 −0.1 −0.27
DL-Camphor Test 152.24 2.1 1.40
Carbamazepine Train 236.27 2.7 3.36
Cephradine Train 349.40 1.0 −1.05
Chloramphenicol Train 323.13 1.0 2.01
Chlorthalidone Train 338.76 −0.7 3.65
Chlorzoxazone Train 169.57 2.2 2.93
Cimetidine Train 252.34 0.4 0.72
Clofazimine Train 473.40 7.5 5.65
Corticosterone Test 346.47 1.8 1.68
Cortisone Train 360.45 1.2 1.74
Cytosine Train 111.10 −1.7 0.21
Dapsone Train 248.30 0.9 4.33
Deoxycorticosterone Train 330.47 3.4 2.77
Dexamethasone Train 392.47 2.1 3.00
Diatrizoic acid Train 613.92 1.6 0.00
Diflunisal Train 250.20 4.3 3.89
Diosgenin Train 414.63 5.7 1.38
5,5-Diphenylhydantoin Test 252.27 2.5 4.11
Disopyramide Train 339.48 2.9 0.98
Diuron Test 233.10 2.8 1.69
Equilin Train 268.35 3.5 4.29
Estradiol-17-alpha Train 272.39 4.1 4.96
Estriol Train 288.39 2.9 3.76
Estrone Test 270.37 3.7 3.99
Ethylparaben Test 166.18 2.4 3.47
Ethynylestradiol-17-alpha Test 296.41 4.5 4.97
Fenbufen Train 254.28 3.0 3.21
Flufenamic acid Train 281.23 5.6 4.02
5-Fluorocytosine Test 129.09 −1.8 −0.79
5-Fluorouracil Test 130.08 −0.8 −0.68
Flurbiprofen Test 244.26 4.1 4.70
Folic acid Train 441.40 −2.1 2.35
Glafenine Train 372.81 3.9 3.88
Griseofulvin Train 352.77 2.4 6.15
Guaifenesin Train 198.22 0.6 1.47
Guanine Train 151.13 −0.9 0.07
Haloperidol Test 375.87 4.1 4.90
Hydrochlorothiazide Train 297.73 −0.1 3.15
Hydrocortisone Train 362.47 1.4 2.00
Hydroflumethiazide Train 331.28 0.5 2.75
Hyoscyamine Test 289.37 1.5 0.81
Ibuprofen Train 206.28 3.7 4.33

Table I. Continued

Compound name Model set MW log P* �

Indapamide Train 365.83 2.1 4.08
Indoprofen Train 281.31 1.7 3.55
Iopanoic acid Train 570.93 5.2 5.71
Ketoprofen Train 254.28 2.8 4.20
Khellin Test 260.25 1.7 1.58
Linuron Test 249.10 3.2 3.07
Mefenamic acid Train 241.29 5.3 4.33
Methocarbamol Test 241.24 0.5 −1.00
Methylparaben Train 152.15 1.9 2.84
Metronidazole Train 171.16 0.0 0.13
Minoxidil Train 209.25 −1.5 0.72
Nadolol Train 309.40 1.3 0.04
Nalidixic acid Train 232.24 0.2 0.85
Naphthalene Train 128.17 3.4 3.94
2-Naphthol Train 144.17 2.7 3.51
Naproxen Train 230.26 3.0 4.30
Nitrofurantoin Train 238.16 −0.5 1.99
Norethisterone Train 298.42 3.4 3.30
Norfloxacin Train 319.33 1.5 0.36
Paracetamol Train 151.16 0.3 1.85
Perphenazine Test 403.97 4.5 3.92
Phenacetin Test 179.22 1.6 2.19
Phenolphthalein Train 318.33 3.3 6.02
Phenylbutazone Train 308.38 3.5 3.02
Praziquantel Test 312.41 3.6 1.91
Prednisolone Test 360.45 1.7 2.56
Primidone Train 218.25 −1.0 2.71
Progesterone Train 314.47 4.0 2.50
Propylparaben Train 180.20 2.9 3.80
Pyrazinamide Test 123.11 −0.4 0.06
Quinidine Test 324.42 3.4 1.73
Quinine Train 324.42 3.4 2.12
Salicylamide Train 137.14 1.4 2.65
Salicylic acid Test 138.12 2.1 2.91
Spironolactone Train 416.57 3.2 2.97
Strychnine Test 334.42 1.7 2.45
Sulfacetamide Train 214.24 −0.9 2.42
Sulfadiazine Train 250.27 −0.1 2.95
Sulfamerazine Test 264.30 0.3 2.53
Sulfamethazine Train 278.33 0.8 2.16
Sulfamethoxazole Train 253.28 0.9 3.80
Sulfanilamide Train 172.20 −0.7 1.19
Sulfathiazole Train 255.31 0.3 2.60
Sulindac Test 356.41 3.6 3.63
Sulpiride Test 341.42 0.5 1.47
Tenoxicam Test 337.37 −0.3 2.41
Terfenadine Test 471.68 6.9 4.25
Tetraethylthiuram disulfide Test 296.52 4.0 3.65
Theobromine Train 180.17 −0.8 0.07
Theophylline Test 180.17 0.1 −0.15
Thiamphenicol Train 356.22 −0.3 1.62
Thymine Test 126.11 −0.1 0.38
Triamcinolone Train 394.44 1.1 2.48
Triamterene Train 253.27 1.3 3.39
1,2,3-Trichlorobenzene Train 181.45 3.8 6.05
Trimethoprim Train 290.32 0.8 1.71
Uracil Test 112.09 −1.1 0.49
Uric acid Train 168.11 −2.4 0.37
Xanthine Train 152.11 −0.6 0.74

MW, molecular weight; �, solubilization factor.
* Log P calculated using ACD software.
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dij = ��xik − xjk�2 k = 1 − 7 (1)

where xi1, xi2, . . . xik are the seven molecular descriptors of
compound i, xj1, xj2, . . . xjk are the seven descriptors for com-
pound j, and dij is the Euclidean distance between compounds
i and j. If a smallest Euclidean distance was found between
testing set compound A and training set compound B, then
solubility of compound A was predicted using the regression
model pertaining to compound B’s group.

The effectiveness of the model was also evaluated with
the cross-validation correlation coefficient (Q2), the correla-
tion coefficient (r), and the root mean square (rms) error. It
was also desired that the model successfully predict solubili-
ties within one order of magnitude (i.e., within 1 log unit).
Therefore, the percentages of solubilities predicted within 1.0
log unit (and within 0.5 log unit) were additional indicators
used to assess the performance of the model.

Comparison to Log-Linear Model

It was possible to compare the experimental data with
the log-linear model for cosolvent solubilization (8). This re-

quired the experimental determination of aqueous solubility
for all 122 drugs in this study. It should be pointed out that in
early drug discovery efforts, such experimental data are not
always available due to limited crystalline drug substance.

The log-linear model relates the solubility of a drug in a
cosolvent mixture (Sm) to the drug’s aqueous solubility (Sw)
and a solubilization factor (�) as follows:

log Sm = log Sw + � � f (2)

where f is the volume fraction of nonaqueous cosolvent in the
mixture, and solubility is in mol/l. Furthermore, � for a drug
is related to the drug’s log P by the following equation:

� = S � log P + T (3)

where S and T are constants specific to a particular cosolvent
(10). By obtaining � values from plots of log Sm vs. f from
experimental determinations and then plotting � vs. log P,
one could use the resulting S and T parameters for PEG, a
drug’s log P, and the solubility of that drug in water to predict
solubility in any fraction of PEG.

RESULTS AND DISCUSSION

QSPR Model

The statistical results of the QSPR modeling in Table II
demonstrate the benefit of incorporating two groups at each
of the three volume fractions of PEG. The regression model
based on the solubility values of the training set compounds
show r values ranging from 0.89 to 0.93, Q2 values of 0.62 to
0.80, and rms values of 0.39 to 0.50 log units. The coefficients
for the model are listed in Table III, and Fig. 1 shows that the
compounds from the training set fit reasonably well to a linear
model.

Data from the 84 training set compounds were initially
regressed to create the QSPR model. The general form of the
QSPR model at each volume fraction of PEG is as follows:

log S = c0 + c1 � MW + c2 � Vm + c3 � RB + c4 � HBA
+ c5 � HBD + c6 � RG + c7 � Dm (4)

where S is the solubility (M), MW is the molecular weight

Table II. Statistical Parameters for the Training Set

Model n r rms F Q2

One-group model
25% PEG 84 0.67 0.83 8.9 0.32
50% PEG 84 0.67 0.79 8.8 0.31
75% PEG 84 0.66 0.75 8.3 0.28

Two-group model
25% PEG

Group 1 42 0.92 0.50 25.8 0.62
Group 2 42 0.90 0.49 20.7 0.74

50% PEG
Group 1 41 0.93 0.39 27.9 0.80
Group 2 43 0.91 0.49 25.1 0.70

75% PEG
Group 1 43 0.92 0.46 27.3 0.77
Group 2 41 0.89 0.40 18.7 0.66

n, number of compounds; r, correlation coefficient; rms, root mean
square error (in log units); F, F-test value for regression; Q2, cross-
validation correlation coefficient

Table III. Coefficients for the QSPR Model*

Regression
coefficients

Cosolvent

25% PEG 50% PEG 75% PEG

Group

1 2 1 2 1 2

c0 1.82E + 01 −5.03E + 00 −3.39E + 00 1.94E + 01 2.07E + 01 −3.96E + 00
c1 5.01E − 02 −1.26E − 02 8.83E − 03 5.28E − 02 7.22E − 02 −7.35E − 03
c2 −6.18E − 02 5.80E − 03 −1.86E − 02 −6.32E − 02 −8.26E − 02 −2.38E − 03
c3 9.75E − 02 2.29E − 01 9.06E − 02 1.92E − 01 1.85E − 01 −6.01E − 03
c4 −6.38E − 02 −6.27E − 02 −3.11E − 01 −3.02E − 02 −1.11E − 01 −2.92E − 01
c5 −2.26E − 01 4.04E − 01 4.51E − 01 −2.61E − 01 −2.04E − 01 −2.84E − 01
c6 −4.65E − 01 −1.61E − 01 4.62E − 01 −7.80E − 01 −3.09E − 01 5.44E − 01
c7 −1.53E + 01 3.16E + 00 1.20E + 00 −1.55E + 01 −1.77E + 01 3.12E + 00

* Log S � c0 + c1�(molecular weight, g/mol) + c2�(molecular volume, Å3) + c3�(number of rotatable bonds) + c4�(number of hydrogen-bond
acceptors) + c5�(number of hydrogen-bond donors) + c6�(radius of gyration, Å) + c7�(molecular density, the ratio of molecular weight/
volume).
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(g/mol), Vm is the molecular volume (Å3), RB is the number
of rotatable bonds, HBA is the number of hydrogen-bond
acceptors, HBD is the number of hydrogen-bond donors, RG
is the radius of gyration (Å), and Dm is the molecular density
(ratio of molecular weight/volume). The regression coeffi-
cients (c0–c7) for groups 1 and 2 at each volume fraction of
PEG are given in Table III.

The experimental and predicted solubility values of the
38 testing set compounds at each volume fraction were used
to assess the predictive ability of the model. As previously
described, the 38 testing set compounds were binned into one
of two groups based on similarity to the training set, as cal-
culated by Euclidean distance. For the 25% PEG model, 20
compounds were predicted by group 1, and 18 compounds
were predicted by group 2. Likewise for the 50% PEG model,
19 compounds were predicted by group 1, and 19 compounds
were predicted by group 2. Finally, for the 75% PEG model,
17 compounds were predicted by group 1, and 21 compounds
were predicted by group 2. For the testing set compounds,
78.1% and 54.4% of the solubility predictions were within 1.0
and 0.5 log units of observed values, respectively (Table IV).

Table IV shows that a QSPR-predicted testing set solu-
bility value was greater than 2.0 log units from the experi-
mental value in four instances: strychnine and terfenadine in
25% PEG and 5-fluorouracil in both 25% and 50% PEG.
Both strychnine and terfenadine were structural outliers in
the clustering analysis used to divide the training and testing
sets, and they reappear as outliers in the modeling results.
While the average Euclidean distance (dij) for testing set com-
pounds from training set compounds was 0.16, the dij of ter-
fenadine from its most similar training set compound, clofaz-
imine, was 1.67. 5-fluorouracil was most similar to the training
set compound xanthine. Although 5-fluorouracil is about 700
times more soluble in water than xanthine, the computational
model does not take aqueous solubility into account, but re-
lies instead upon molecular descriptors. The cosolvent solu-
bilities for 5-fluorouracil were therefore underpredicted to be
similar to xanthine.

The training and testing sets were divided using both
cluster analysis and random selection. This selection method
was repeated to generate a second model with different train-
ing and testing sets containing 82 and 40 compounds, respec-
tively. This model predicted 77.5% of its testing set solubili-
ties within 1.0 log unit (compared to 78.1% for the original

Fig. 1. Training set results. Experimental solubilities vs. predicted
solubilities by the QSPR model for (A) 25%, (B) 50%, and (C) 75%
PEG.

Table IV. Residual Distributions for Predicted Testing Set Solubilities

Residual ranges in log units

< ± 0.5 ± 0.5 to ± 1.0 ± 1.0 to ± 1.5 ± 1.5 to ± 2.0 > ± 2.0

QSPR model
25% PEG 18* (47.4%) 12 (31.6%) 3 (7.9%) 2 (5.3%) 3 (7.9%)
50% PEG 24 (63.2%) 6 (15.8%) 5 (13.2%) 2 (5.3%) 1 (2.6%)
75% PEG 20 (52.6%) 9 (23.7%) 4 (10.5%) 5 (13.2%) 0 (0%)

Total 62 (54.4%) 27 (23.7%) 12 (10.5%) 9 (7.9%) 4 (3.5%)
Log-linear model

25% PEG 29 (76.3%) 6 (15.8%) 2 (5.3%) 1 (2.6%) 0 (0%)
50% PEG 22 (57.9%) 13 (34.2%) 2 (5.3%) 1 (2.6%) 0 (0%)
75% PEG 14 (36.8%) 12 (31.6%) 8 (21.1%) 2 (5.3%) 2 (5.3%)

Total 65 (57%) 31 (27.2%) 12 (10.5%) 4 (3.5%) 2 (1.8%)

* Number of compounds (percentage) having the predicted solubility within a specified number of log units of the experimental value.
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model), serving as proof of the model’s robustness. It is in-
teresting to note that this second model also resulted in four
outlying residuals greater than 2.0 log units.

In recent years, in silico quantitative structure–property
relationships have been used for the prediction of various
physicochemical properties. A QSPR is a mathematical rela-
tionship between a property of interest and structural char-
acteristics of the compounds. The structural features of a
compound are quantified by a series of molecular descriptors
that encode the topological, geometric, and electronic infor-
mation of the molecule. Selection of appropriate molecular
descriptors and use of an appropriate data set is critical to
model success (16). Significant advances have been made in
the development of new molecular descriptors based on re-
cent advances in computational abilities. In many of these
studies, complex molecular descriptors such as E-state indi-
ces, total weighted number of paths, and cube root of gravi-
tation index were used, making the interpretation of the
model difficult (17,18). In the current analysis, descriptor se-
lection was limited to those that are physically and chemically
relevant and can directly be related to solubility of drugs in
PEG. By applying some of the more advanced predictors, it
may be possible to improve model predictiveness. While
many QSPR models have been developed for predicting
aqueous solubility (13), there are no reports in the literature
which apply QSPR models for predicting drug solubility in
cosolvent systems.

Log-Linear Model

For comparison of the QSPR modeling results to the
log-linear model, � was calculated from the experimental data
in 0%, 25%, 50%, and 75% PEG as described by Millard et
al. (12). S and T parameters obtained from the training set �
values were used with experimental aqueous solubility data
and log P values for the testing set compounds to predict
cosolvent solubility values for the testing set.

Table IV and Fig. 2 show that the QSPR and log-linear
models predict the testing set solubility values with compa-
rable accuracy. Considering the theoretical basis of the log-
linear model, it is not surprising that this model predicts solu-
bilities in 25% PEG better than in the higher volume fractions
and better than the QSPR model in 25% PEG. One would
expect the solubility at a low fraction of cosolvent to be close
to its aqueous solubility, an experimental input for the log-
linear prediction.

Although the predictive abilities of the QSPR and log-
linear models are similar, a key difference between the two
methods is that the QSPR model requires no experimental
data—the cosolvent solubility values are calculated from mo-
lecular descriptors obtained from a chemical structure. Pre-
diction by the log-linear equation, on the other hand, requires
the experimental determination of aqueous solubility.

Several authors have observed positive deviation from
log-linear behavior at higher fractions of cosolvent (3,19–23).
In this study, solubility was measured across the entire PEG
fraction range for 94 drugs, and about half of these com-
pounds displayed such deviation. Rubino et al. (21,22) suggest
that hydrogen-bond donating groups can compete with water
for hydrogen-bond accepting sites on the cosolvent molecule.
Consistent with the suggestion, we observed that the magni-
tude of a compound’s deviation from log-linearity at high

fractions of PEG correlated well with the number of hydro-
gen-bond donors for compounds containing no phenyl rings.
However, for the drugs containing phenyl rings, the lack of a
strong correlation may be due to steric interference of the
phenyl rings with hydrogen bonding (14) or the existence of
oxygen-aromatic interactions with the cosolvent (24).

Despite these deviations from ideality, the log-linear
model was still a useful predictive tool. The regression of S
and T parameters from 122 experimental � values in this
study appears in Fig. 3. Even though there is fair agreement
between � values for individual drugs overlapping this work
and Ref. 12, the S, T, and r values in Table V are not in
complete accord, perhaps due to the larger compound base
used in this study. Whereas the regression of PEG 400 log-
linear S and T parameters in this study gave r � 0.67 (n �
122), Millard et al. report the r for � and log P in ethanol to

Fig. 2. Testing set results. Experimental solubilities vs. predicted solu-
bilities by the QSPR model (closed circles) and the log-linear model
(open circles) for (A) 25%, (B) 50%, and (C) 75% PEG.
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be 0.98 (n � 120) (12). This suggests that solubilization power
in PEG does not correlate with log P as well as solubilization
in a more octanol-like cosolvent, such as ethanol; this obser-
vation needs further investigation.

CONCLUSIONS

A QSPR model for predicting solubility of drugs in three
volume fractions of PEG was developed based on experimen-
tal data. This tool for vehicle identification during lead opti-
mization can be used to predict solubility of a compound in a
PEG/water cosolvent mixture from the knowledge of its
chemical structure alone, without experimental measure-
ments. This model is especially useful during early drug dis-
covery because no compound is required, thus making the
prediction fast and practical. Often, the pharmaceutical sci-
entist has minimal amounts of compound (5–10 mg), and it is
desired to identify a preclinical formulation at a target con-
centration of 10–20 mg/ml; hence any method(s) that can
guide vehicle selection would be valuable. In the interest of
keeping the model simple and with the long-term objective of
extending in silico predictions into new areas, the model was
limited to seven descriptors. This model will be applied next
to the prediction of cosolvent solubility of internal Bristol-
Myers Squibb compounds in various PEG/water fractions. An
immediate advantage has been the rapid identification of ap-
propriate cosolvent systems necessary for early preclinical
animal studies.

When aqueous solubility of crystalline drug substance is
available, log-linear estimation is simple and effective. The
log-linear model predicted the testing set solubilities as well
as the QSPR model, but the log-linear model is dependent on
an experimental measurement of aqueous solubility. Thus,
the QSPR model described here benefits pharmaceutical sci-

entists at the discovery phase seeking a quick and reliable
estimation of cosolvent solubility, without expending com-
pound.
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